2011年,“制造4.0”一词首次出现。它源于德国政府推动制造业电脑化,为工厂生产引入了数字化、自动化和人工智能的未来愿景。在该方案中,边缘技术可以促进问题或情况的关键位置的决策,其中ai嵌入式soc发挥了主要作用。
今天,这种实时的边缘决策是真实的。制造过程由人工智能支持的边缘决策提供动力。未来,人工智能边缘芯片可以向采购方发出原材料短缺的可操作警报,或在发现缺陷组件时向销售方发出产品可能出现短缺的警报。
边缘人工智能芯片自动化也正在改变物流。
卡车车队可以通过低延迟的边缘通信进行交叉通信,以节省燃料和优化路线。未来,这些卡车中可能只有一辆由人类驾驶,其余车辆则由soc驱动的自动化系统运行。
这可以解决卡车行业的一个主要问题:合格司机的短缺。J.B.Hunt运输服务公司执行副总裁、首席商务官兼高速公路服务总裁ShelleySimpson说:“这是你看到这么多技术进入卡车行业的原因之一。”
每辆卡车的货舱内的智能传感器还可以监控易腐货物的温度和湿度。
例如,一辆运送农产品到亚特兰大的卡车被改道到更靠近华盛顿的市场。在该卡车货舱内的传感器提醒司机和物流公司产品过热可能会变质后,该公司下令改变路线。该公司对信息进行实时处理的能力避免了损坏,节省了资金。在食品行业,它是主要的。联合国粮食和农业组织估计,每年损失或浪费的粮食价值1万亿美元。
人工智能芯片技术也正在改变机载和地面车辆的性能。
军事人员在观察和/或进入危险区域时面临后勤挑战。在过去,一项危险的监视工作可能需要人类亲自检查该地区,使人员面临危险和生命损失。
现在有了边缘人工智能处理,一队无人机可以进行侦察和实时通信。如果一个中队的无人机被击落,该编队会发现问题,调整编队以继续执行任务。SAS物联网和边缘部门产品管理高级经理SaurabhMishra表示:“除非有专门的芯片支持,否则需要处理包括视频和音频在内的多种感官输入的高要求工作负载可能会开始突破极限。”“无人驾驶飞机、机械手臂和工业自动化都是这些芯片应用的好例子。”